Kubernetes and Redis Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.
The Redis plugin enables users to send metrics collected by Telegraf directly to Redis. This integration is ideal for applications that require robust time series data storage and analysis.
Integration details
Kubernetes
The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.
Redis
The Redis Telegraf plugin is designed for writing metrics to RedisTimeSeries, a specialized Redis database module for time series data. This plugin facilitates the integration of Telegraf with RedisTimeSeries, allowing for the efficient storage and retrieval of timestamped data. With RedisTimeSeries, users can take advantage of enhanced capabilities for managing time series data, including aggregated views and range queries. The plugin offers various configuration options to enable the flexibility needed to connect securely to your Redis database, including support for Authentication, Timeouts, data type conversions, and TLS configurations. The underlying technology leverages Redis’ efficiency and scalability, making it an excellent choice for high-volume metric environments, where real-time processing is essential.
Configuration
Kubernetes
[[inputs.kubernetes]]
## URL for the kubelet, if empty read metrics from all nodes in the cluster
url = "http://127.0.0.1:10255"
## Use bearer token for authorization. ('bearer_token' takes priority)
## If both of these are empty, we'll use the default serviceaccount:
## at: /var/run/secrets/kubernetes.io/serviceaccount/token
##
## To re-read the token at each interval, please use a file with the
## bearer_token option. If given a string, Telegraf will always use that
## token.
# bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
## OR
# bearer_token_string = "abc_123"
## Kubernetes Node Metric Name
## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
## option to a different value.
# node_metric_name = "kubernetes_node"
## Pod labels to be added as tags. An empty array for both include and
## exclude will include all labels.
# label_include = []
# label_exclude = ["*"]
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Redis
[[outputs.redistimeseries]]
## The address of the RedisTimeSeries server.
address = "127.0.0.1:6379"
## Redis ACL credentials
# username = ""
# password = ""
# database = 0
## Timeout for operations such as ping or sending metrics
# timeout = "10s"
## Enable attempt to convert string fields to numeric values
## If "false" or in case the string value cannot be converted the string
## field will be dropped.
# convert_string_fields = true
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Kubernetes
-
Dynamic Resource Allocation Monitoring: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.
-
Multi-tenancy Resource Isolation Analysis: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.
-
Real-time Health Dashboards: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.
-
Automated Incident Response Workflows: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.
Redis
-
Monitoring IoT Sensor Data: Utilize the Redis Telegraf plugin to collect and store data from IoT sensors in real-time. By connecting the plugin to a RedisTimeSeries database, users can analyze trends in temperature, humidity, or other environmental factors. The ability to query historical sensor data efficiently will aid in predictive maintenance and help in resource management.
-
Financial Market Data Aggregation: Employ this plugin to track and store time-sensitive financial data from various sources. By sending metrics to Redis, financial institutions can aggregate and analyze market trends or price changes over time, providing them with actionable insights derived from reliable time series analytics.
-
Application Performance Monitoring (APM): Implement the Redis plugin for gathering application performance metrics such as response times and CPU usage. Users can visualize their application’s performance over time with RedisTimeSeries, allowing them to identify bottlenecks and optimize resource allocation swiftly.
-
Energy Consumption Tracking: Leverage this plugin to monitor energy usage in buildings over time. By integrating with smart meters and sending data to RedisTimeSeries, municipalities or enterprises can analyze energy consumption patterns, helping to implement energy-saving measures and sustainability practices.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration