Fluentd and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Fluentd Input Plugin gathers metrics from Fluentd’s in_monitor plugin endpoint. It provides insights into various plugin metrics while allowing for custom configurations to reduce series cardinality.
Telegraf’s SQL output plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.
Integration details
Fluentd
This plugin gathers metrics from the Fluentd plugin endpoint provided by the in_monitor plugin. It reads data from the /api/plugin.json resource and allows exclusion of specific plugins based on their type.
Clickhouse
The SQL output plugin is designed to store Telegraf metrics in an SQL database using a simple, hard-coded schema. Each metric type gets its own table, and columns are generated for every tag and field, with an optional timestamp column. For ClickHouse, the plugin leverages a specialized DSN format as defined by clickhouse-go v1.5.4 and customizes metric type conversion to align with ClickHouse data types. This ensures that integers, texts, timestamps, booleans, and real numbers are mapped to ClickHouse’s native types such as Int64, String, DateTime, UInt8, and Float64 respectively.
Configuration
Fluentd
[[inputs.fluentd]]
## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
##
## Endpoint:
## - only one URI is allowed
## - https is not supported
endpoint = "http://localhost:24220/api/plugins.json"
## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
exclude = [
"monitor_agent",
"dummy",
]
Clickhouse
[[outputs.sql]]
## Database driver
## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
driver = "clickhouse"
## Data source name
## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
## Example DSN: "tcp://localhost:9000?debug=true"
data_source_name = "tcp://localhost:9000?debug=true"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion for ClickHouse.
## The conversion maps Telegraf metric types to ClickHouse native data types.
[outputs.sql.convert]
conversion_style = "literal"
integer = "Int64"
text = "String"
timestamp = "DateTime"
defaultvalue = "String"
unsigned = "UInt64"
bool = "UInt8"
real = "Float64"
Input and output integration examples
Fluentd
- Basic Configuration: Set up the Fluentd Input Plugin to gather metrics from your Fluentd instance’s monitoring endpoint, ensuring you are able to track performance and usage statistics.
- Excluding Plugins: Use the
exclude
option to ignore specific plugins’ metrics that are not necessary for your monitoring needs, streamlining data collection and focusing on what matters. - Custom Plugin ID: Implement the
@id
parameter in your Fluentd configuration to maintain a consistentplugin_id
, which helps avoid issues with high series cardinality during frequent restarts.
Clickhouse
-
Basic ClickHouse Integration: Configure the plugin by setting the driver to ‘clickhouse’ and providing the appropriate DSN format as required by clickhouse-go v1.5.4. This ensures that Telegraf can connect and write metrics to your ClickHouse database.
-
Customized Table Schemas: Leverage the table creation and existence check templates to tailor the database schema. This allows you to predefine column types and even disable automatic table creation if you prefer manual schema management.
-
Advanced Type Conversion: Utilize the ClickHouse-specific conversion settings to map Telegraf metric types directly to ClickHouse data types (e.g., mapping integers to Int64 and timestamps to DateTime). This ensures data is stored with the correct precision and format.
-
Initialization and Connection Tuning: Use the init_sql setting to run custom SQL commands upon connection, and adjust connection pool settings (like connection_max_idle_time and connection_max_open) to optimize performance for high-throughput environments.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration