ActiveMQ and Splunk Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider ActiveMQ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ActiveMQ Input Plugin collects metrics from the ActiveMQ message broker through its Console API, providing insights into the performance and status of message queues, topics, and subscribers.

This output plugin facilitates direct streaming of Telegraf collected metrics into Splunk via the HTTP Event Collector, enabling easy integration with Splunk’s powerful analytics platform.

Integration details

ActiveMQ

The ActiveMQ Input Plugin interfaces with the ActiveMQ Console API to gather metrics related to queues, topics, and subscribers. ActiveMQ, a widely-used open-source message broker, supports various messaging protocols and provides a robust Web Console for management and monitoring. This plugin allows users to track essential metrics including queue sizes, consumer counts, and message counts across different ActiveMQ entities, thereby enhancing observability within messaging systems. Users can configure various parameters such as the WebConsole URL and basic authentication credentials to tailor the plugin to their environment. The metrics collected can be used for monitoring the health and performance of messaging applications, facilitating proactive management and troubleshooting.

Splunk

Use Telegraf to easily collect and aggregate metrics from many different sources and send them to Splunk. Utilizing the HTTP output plugin combined with the specialized Splunk metrics serializer, this configuration ensures efficient data ingestion into Splunk’s metrics indexes. The HEC is an advanced mechanism provided by Splunk designed to reliably collect data at scale via HTTP or HTTPS, providing critical capabilities for security, monitoring, and analytics workloads. Telegraf’s integration with Splunk HEC streamlines operations by leveraging standard HTTP protocols, built-in authentication, and structured data serialization, optimizing metrics ingestion and enabling immediate actionable insights.

Configuration

ActiveMQ

[[inputs.activemq]]
  ## ActiveMQ WebConsole URL
  url = "http://127.0.0.1:8161"

  ## Required ActiveMQ Endpoint
  ##   deprecated in 1.11; use the url option
  # server = "192.168.50.10"
  # port = 8161

  ## Credentials for basic HTTP authentication
  # username = "admin"
  # password = "admin"

  ## Required ActiveMQ webadmin root path
  # webadmin = "admin"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

Input and output integration examples

ActiveMQ

  1. Proactive Queue Monitoring: Use the ActiveMQ plugin to monitor queue sizes in real-time for a high-volume trading application. This implementation allows teams to receive alerts when queue sizes exceed a certain threshold, enabling rapid response to potential downtime caused by backlogs, thereby ensuring continuous availability of trading operations.

  2. Performance Baselines and Anomaly Detection: Integrate this plugin with machine learning frameworks to establish performance baselines for message throughput. By analyzing historical data collected through this plugin, teams can flag anomalies in processing rates, leading to quicker identification of issues impacting service reliability and performance.

  3. Cross-Messaging System Analytics: Combine metrics from ActiveMQ with those from other messaging systems in a centralized dashboard. Users can visualize and compare performance data, such as enqueue and dequeue rates, providing valuable insights into the overall messaging architecture and assisting in optimizing the message flow between different brokers.

  4. Subscriber Performance Insights: Leverage the subscriber metrics collected by this plugin to analyze behavior patterns and optimize configuration for consumer applications. Understanding metrics such as dispatched queue size and counter values can guide adjustments to improve processing efficiency and resource allocation.

Splunk

  1. Real-Time Security Analytics: Utilize this plugin to stream security-related metrics from various applications into Splunk in real-time. Organizations can detect threats instantly by correlating data streams across systems, significantly reducing detection and response times.

  2. Multi-Cloud Infrastructure Monitoring: Integrate Telegraf to consolidate metrics from multi-cloud environments directly into Splunk, enabling comprehensive visibility and operational intelligence. This unified monitoring allows teams to detect performance issues quickly and streamline cloud resource management.

  3. Dynamic Capacity Planning: Deploy the plugin to continuously push resource metrics from container orchestration platforms (like Kubernetes) into Splunk. Leveraging Splunk’s analytics capabilities, teams can automate predictive scaling and resource allocation, avoiding resource bottlenecks and minimizing costs.

  4. Automated Incident Response Workflows: Combine this plugin with Splunk’s alerting system to create automated incident response workflows. Metrics collected by Telegraf trigger real-time alerts and automated remediation scripts, ensuring rapid resolution and maintaining high system availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration