PostgreSQL vs OpenTSDB
A detailed comparison
Compare PostgreSQL and OpenTSDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of PostgreSQL and OpenTSDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how PostgreSQL and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
PostgreSQL vs OpenTSDB Breakdown
Database Model | Relational database |
Time series database |
Architecture | PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL. |
OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes. |
License | PostgreSQL license (similar to MIT or BSD) |
GNU LGPLv2.1 |
Use Cases | Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications |
Monitoring, observability, IoT, log data storage |
Scalability | Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools |
Horizontally scalable across multiple nodes using HBase as its storage backend |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
PostgreSQL Overview
PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.
OpenTSDB Overview
OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.
PostgreSQL for Time Series Data
PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.
OpenTSDB for Time Series Data
OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.
PostgreSQL Key Concepts
- MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
- WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
- TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.
OpenTSDB Key Concepts
- Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
- Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
- Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.
PostgreSQL Architecture
PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.
OpenTSDB Architecture
OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
PostgreSQL Features
Extensibility
PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.
Full-text search
PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.
Geospatial support
With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.
OpenTSDB Features
Scalability
OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.
Data Compression
OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.
Query Language with time series support
OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.
PostgreSQL Use Cases
Enterprise applications
PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.
GIS applications
With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.
OLTP workloads
As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.
OpenTSDB Use Cases
Monitoring and Alerting
OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.
IoT Data Storage
OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.
Performance Analysis
OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.
PostgreSQL Pricing Model
PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.
OpenTSDB Pricing Model
OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.