Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Pinot and Prometheus so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Pinot and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Pinot vs Prometheus Breakdown


 
Database Model

Columnar database

Time series database

Architecture

Pinot can be deployed on-premises, in the cloud, or using a managed service

Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes.

License

Apache 2.0

Apache 2.0

Use Cases

Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics

Monitoring, alerting, observability, system metrics, application metrics

Scalability

Horizontally scalable, supports distributed architectures for high availability and performance

Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers)

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Apache Pinot Overview

Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.

Prometheus Overview

Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.


Apache Pinot for Time Series Data

Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.

Prometheus for Time Series Data

Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.


Apache Pinot Key Concepts

  • Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
  • Table: A table in Pinot is a collection of segments.
  • Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
  • Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
  • Server: The server stores segments and processes queries on those segments.

Prometheus Key Concepts

  • Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
  • Time Series: A collection of data points for a metric, indexed by timestamp.
  • Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
  • PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.


Apache Pinot Architecture

Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.

Prometheus Architecture

Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Pinot Features

Real-time Ingestion

Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.

Scalability

Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.

Low-latency Query Processing

Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.

Prometheus Features

Pull-based Model

Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.

PromQL

The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.

Alerting

Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.


Apache Pinot Use Cases

Real-time Analytics

Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.

Ad Tech and User Analytics

Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.

Anomaly Detection and Monitoring

Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.

Prometheus Use Cases

Infrastructure Monitoring

Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.

Application Performance Monitoring (APM)

Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.

Alerting and Anomaly Detection

Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.


Apache Pinot Pricing Model

As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.

Prometheus Pricing Model

Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.