InfluxDB vs OSI PI Data Historian
A detailed comparison
Compare InfluxDB and OSI PI Data Historian for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of InfluxDB and OSI PI Data Historian so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how InfluxDB and OSI PI Data Historian perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
InfluxDB vs OSI PI Data Historian Breakdown
Database Model | Time series database/data historian |
|
Architecture | Cloud native architecture that can be used as a managed cloud service or self-managed on your own hardware locally |
OSIsoft PI System is a suite of software products designed for real-time data collection, storage, and analysis of time series data in industrial environments. The PI System is built around the PI Server, which stores, processes, and serves data to clients, and it can be deployed on-premises or in the cloud. |
License | MIT |
Closed source |
Use Cases | Monitoring, observability, IoT, real-time analytics |
Industrial data management, real-time monitoring, asset health tracking, predictive maintenance, energy management |
Scalability | Horizontally scalable with decoupled storage and compute with InfluxDB 3.0 delivers up to 90% reduced storage costs( benchmarks ) |
Supports horizontal scaling through distributed architecture, data replication, and data federation for large-scale deployments |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
InfluxDB Overview
InfluxDB is a high-performance, time series database capable of storing any form of time series data, such as metrics, events, logs and traces. InfluxDB is developed by InfluxData and first released in 2013. InfluxDB is an open source database written in Go, with a focus on performance, scalability, and developer productivity. The database is optimized for handling time series data at scale, making it a popular choice for use cases involving monitoring performance metrics, IoT data, and real-time analytics.
InfluxDB 3.0 is the newest version of InfluxDB, currently available in InfluxDB Cloud Serverless and InfluxDB Cloud Dedicated. Built in Rust, a modern programming language designed for performance, safety, and memory management. InfluxDB also features a decoupled architecture that allows compute and storage to be scaled independently. InfluxDB 3.0 provides query support for both SQL and InfluxQL (custom SQL-like query language with added support for time-based functions).
OSI PI Data Historian Overview
OSI PI, also known as OSIsoft PI System, is an enterprise-level data management and analytics platform specifically designed for handling time series data from industrial processes, sensors, and other sources. Developed by OSIsoft (acquired by AVEVA in 2021), the PI System has been widely used in various industries such as energy, manufacturing, utilities, and pharmaceuticals since its introduction in the 1980s. It provides the ability to collect, store, analyze, and visualize large volumes of time series data in real-time, allowing organizations to gain insights, optimize processes, and improve decision-making.
InfluxDB for Time Series Data
InfluxDB is specifically designed for time series data, making it well-suited for applications that involve tracking and analyzing data points over time. It excels in scenarios where data is being written continuously at high volumes while users also require the ability to query that data quickly after ingest for monitoring and real time analytics use cases.
OSI PI Data Historian for Time Series Data
OSI PI was created for storing time series data, making it an ideal choice for organizations that need to manage large volumes of sensor and process data. Its architecture and components are optimized for collecting, storing, and analyzing time series data with high efficiency and minimal latency. The PI System’s scalability and performance make it a suitable solution for organizations dealing with vast amounts of data generated by industrial processes, IoT devices, or other sources.
InfluxDB Key Concepts
- Columnar storage: InfluxDB stores data in a column-oriented format, using Parquet for persistent file storage and Apache Arrow as the in-memory representation of data. Columnar storage results in better data compression and faster queries for analytics workloads.
- Data Model: The InfluxDB data model will be familiar to anyone who has worked with other database systems. At the highest level are buckets, which are similar to what other systems call databases. InfluxDB measurements are synonymous with tables. Specific data points for a measurement contain tags and values. Tags are used as part of the primary key for querying data and should be used for identifying information used for filtering during queries. InfluxDB is schemaless so new fields can be added without requiring migrations or modifying a schema.
- Integrations: InfluxDB is built to be flexible and fit into your application’s architecture. One key aspect of this is the many ways InfluxDB makes it easy to read and write data. To start, all database functionality can be accessed via HTTP API or with the InfluxDB CLI. For writing data InfluxDB created Telegraf, a tool that can collect data from hundreds of different sources via plugins and write that data to InfluxDB. Client libraries are also available for the most popular programming languages to allow writing and querying data.
- Decoupled architecture: InfluxDB 3.0 features a decoupled architecture which allows query compute, data ingestion, and storage to be scaled independently. This allows InfluxDB to be fine-tuned for your use case and results in significant cost savings.
- Query Languages: InfluxDB can be queried using standard SQL or InfluxQL, an SQL dialect with a number of specialized functions useful for working with time series data.
- Retention Policies: InfluxDB allows you to define retention policies that determine how long data is stored before being automatically deleted. This is useful for managing the storage of high volume time series data.
OSI PI Data Historian Key Concepts
- PI Server: The core component of the PI System, responsible for data collection, storage, and management.
- PI Interfaces and PI Connectors: Software components that collect data from various sources and send it to the PI Server.
- PI Asset Framework: A modeling framework that allows users to create a hierarchical structure of assets and their associated metadata, making it easier to understand and analyze data.
- PI DataLink: An add-in for Microsoft Excel that enables users to access and analyze PI System data directly from Excel.
- PI ProcessBook: A visualization tool for creating interactive, graphical displays of PI System data.
InfluxDB Architecture
At a high level, InfluxDB’s architecture is designed to optimize storage and query performance for time series data. The exact architecture of InfluxDB will vary slightly depending on the version and how you deploy InfluxDB.
InfluxDB 3.0’s architecture can be broken down into four key components that operate almost independently from each other, allowing for InfluxDB to be extremely flexible in terms of configuration. These components are are data ingest, data querying, data compaction, and garbage collection. Data is written via the ingesters with millisecond latency. This data can be queried almost immediately by the data queriers while in the background the compactor takes the newly written data files and combines them into larger files that will be sent to object storage. The garbage collector is responsible for data retention and space reclamations by scheduling soft and hard deletion of data.
They key part of InfluxDB’s architecture is the separation of the ingest and query components, which allows each to be scaled independently depending on the current write and query workload. The querier being able to seamlessly pull in recently written data from the ingesters as well as from object storage allows data to be stored cheaply without increasing query latency.
OSI PI Data Historian Architecture
OSI PI is a data management platform built around the PI Server, which is responsible for data collection, storage, and management. The PI System uses a highly efficient, proprietary time series database to store data. PI Interfaces and PI Connectors collect data from various sources and send it to the PI Server. The PI Asset Framework (AF) allows users to model their assets and their associated data in a hierarchical structure, making it easier to understand and analyze the data. Various client tools, such as PI DataLink and PI ProcessBook, enable users to access and visualize data stored in the PI System.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
InfluxDB Features
High-performance storage and querying
InfluxDB is optimized for time series data, providing high-performance storage and querying capabilities. In terms of storage InfluxDB is able to scale effortlessly due to its decoupled architecture. Object storage is used to persist data and query nodes can be scaled independently to improve query performance and capacity.
Compared to previous versions of InfluxDB, the newly released InfluxDB 3.0 compresses data 4.5x more effectively and queries are 2.5-45x faster depending on the type of query.
Retention policies
InfluxDB allows users to define retention policies that automatically delete data points after a specified duration. This feature helps manage data storage costs and ensures that only relevant data is retained.
Data compression
InfluxDB’s storage engine automatically compacts data on disk, reducing storage requirements and improving query performance. With InfluxDB 3.0 data is stored using the Parquet file format to get even higher compression ratios on time series data.
Horizontal scaling and clustering
InfluxDB supports horizontal scaling and clustering, allowing users to distribute data across multiple nodes for increased performance and fault tolerance.
Data tiering
InfluxDB 3.0 is able to seamlessly move data from cheap object storage into faster storage for low latency queries without expensive SSD or high amounts of RAM utilization. This allows users to store data for longer at higher frequencies while still saving in storage costs.
OSI PI Data Historian Features
Data collection and storage
OSI PI’s PI Interfaces and PI Connectors enable seamless data collection from a wide variety of sources, while the PI Server efficiently stores and manages the data.
Scalability
The PI System is highly scalable, allowing organizations to handle large volumes of data and a growing number of data sources without compromising performance.
Asset modeling
The PI Asset Framework (AF) provides a powerful way to model assets and their associated data, making it easier to understand and analyze complex industrial processes.
Data visualization
Tools like PI DataLink and PI ProcessBook enable users to analyze and visualize data stored in the PI System, facilitating better decision-making and process optimization.
InfluxDB Use Cases
Monitoring and alerting
InfluxDB is widely used for monitoring and alerting purposes, as it can efficiently store and process time series data generated by various systems, applications, and devices. With its high-performance query engine and integration with visualization tools like Grafana, users can create real-time dashboards and set up alerts based on specific conditions or thresholds.
IoT data storage and analysis
Due to its high write and query performance, InfluxDB is an ideal choice for storing and analyzing IoT data generated by sensors, devices, and applications. Users can leverage InfluxDB’s scalability and retention policies to manage large volumes of time series data, and use its powerful query languages to gain insights into the IoT ecosystem.
Real-time analytics
InfluxDB’s performance and flexibility make it suitable for real-time analytics use cases, such as tracking user behavior, monitoring application performance, and analyzing financial data. With its support for InfluxQL and SQL, users can perform complex data analysis and aggregation in real-time, enabling them to make data-driven decisions.
OSI PI Data Historian Use Cases
Process optimization
OSI PI can help organizations identify inefficiencies, monitor performance, and optimize their industrial processes by providing real-time insights into time series data from sensors and other sources.
Predictive maintenance
By analyzing historical data and detecting patterns or anomalies, OSI PI enables organizations to implement predictive maintenance strategies, reducing equipment downtime and maintenance costs.
Energy management
OSI PI can be used to track energy consumption across various assets and processes, allowing organizations to identify areas for improvement and implement energy-saving measures.
InfluxDB Pricing Model
InfluxDB offers several pricing options, including a free open source version, a cloud-based offering, and an enterprise edition for on-premises deployment:
- InfluxDB Cloud Serverless: InfluxDB Cloud Serverless is a managed, cloud-based offering with a pay-as-you-go pricing model. It provides additional features, such as monitoring, alerting, and data visualization. InfluxDB Cloud is available across all major cloud providers.
- InfluxDB Cloud Dedicated - This is a managed cloud solution that provides an isolated InfluxDB instance on dedicated hardware for use cases that require isolation or benefit from being able to specify and fine-tune hardware configuration.
- InfluxDB Enterprise: On-prem solution with enterprise features for security and support for clustering and other horizontal scaling options.
- InfluxDB Open Source: The open source version of InfluxDB is free to use and provides the core functionality of the database.
OSI PI Data Historian Pricing Model
Pricing for OSI PI is typically based on a combination of factors such as the number of data sources, the number of users, and the level of support required. Pricing details are not publicly available, as they are provided on a quote basis depending on the specific needs of the organization.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.