Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Elasticsearch and Mimir so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Elasticsearch and Mimir perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Elasticsearch vs Mimir Breakdown


 
Database Model

Distributed search and analytics engine, document-oriented

Time series database

Architecture

Elasticsearch is built on top of Apache Lucene and uses a RESTful API for communication. It stores data in a flexible JSON document format, and the data is automatically indexed for fast search and retrieval. Elasticsearch can be deployed as a single node, in a cluster configuration, or as a managed cloud service (Elastic Cloud)

Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana

License

Elastic License

APGL 3.0

Use Cases

Full-text search, log and event data analysis, real-time application monitoring, analytics

Monitoring, observability, IoT

Scalability

Horizontally scalable with support for data sharding, replication, and distributed querying

Horizontally scalable

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Elasticsearch Overview

Elasticsearch is an open-source distributed search and analytics engine built on top of Apache Lucene. It was first released in 2010 and has since become popular for its scalability, near real-time search capabilities, and ease of use. Elasticsearch is designed to handle a wide variety of data types, including structured, unstructured, and time-based data. It is often used in conjunction with other tools from the Elastic Stack, such as Logstash for data ingestion and Kibana for data visualization.

Mimir Overview

Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.


Elasticsearch for Time Series Data

Elasticsearch can be used for time series data storage and analysis, thanks to its distributed architecture, near real-time search capabilities, and support for aggregations. However, it might not be as optimized for time series data as dedicated time series databases. Despite this, Elasticsearch is widely used for log and event data storage and analysis which can be considered time series data.

Mimir for Time Series Data

Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.


Elasticsearch Key Concepts

  • Inverted Index: A data structure used by Elasticsearch to enable fast and efficient full-text searches.
  • Cluster: A group of Elasticsearch nodes that work together to distribute data and processing tasks.
  • Shard: A partition of an Elasticsearch index that allows data to be distributed across multiple nodes for improved performance and fault tolerance.

Mimir Key Concepts

  • Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
  • Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
  • Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.


Elasticsearch Architecture

Elasticsearch is a distributed, RESTful search and analytics engine that uses a schema-free JSON document data model. It is built on top of Apache Lucene and provides a high-level API for indexing, searching, and analyzing data. Elasticsearch’s architecture is designed to be horizontally scalable, with data distributed across multiple nodes in a cluster. Data is indexed using inverted indices, which enable fast and efficient full-text searches.

Mimir Architecture

Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Elasticsearch Features

Elasticsearch provides powerful full-text search capabilities with support for complex queries, scoring, and relevance ranking.

Scalability

Elasticsearch’s distributed architecture enables horizontal scalability, allowing it to handle large volumes of data and high query loads.

Aggregations

Elasticsearch supports various aggregation operations, such as sum, average, and percentiles, which are useful for analyzing and summarizing data.

Mimir Features

Scalability

Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.

High Availability

Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.

Long-term Storage

Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.


Elasticsearch Use Cases

Log and Event Data Analysis

Elasticsearch is widely used for storing and analyzing log and event data, such as web server logs, application logs, and network events, to help identify patterns, troubleshoot issues, and monitor system performance.

Elasticsearch is a popular choice for implementing full-text search functionality in applications, websites, and content management systems due to its powerful search capabilities and flexible data model.

Security Analytics

Elasticsearch, in combination with other Elastic Stack components, can be used for security analytics, such as monitoring network traffic, detecting anomalies, and identifying potential threats.

Mimir Use Cases

Metrics Monitoring and Observability

Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.

Long Term Metric Storage

With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.

Trend and anomaly detection

By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies


Elasticsearch Pricing Model

Elasticsearch is open-source software and can be self-hosted without any licensing fees. However, operational costs, such as hardware, hosting, and maintenance, should be considered. Elasticsearch also offers a managed cloud service called Elastic Cloud, which provides various pricing tiers based on factors like storage, computing resources, and support. Elastic Cloud includes additional features and tools, such as Kibana, machine learning, and security features.

Mimir Pricing Model

Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.