Apache Druid vs TimescaleDB
A detailed comparison
Compare Apache Druid and TimescaleDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Druid and TimescaleDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Druid and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Druid vs TimescaleDB Breakdown
Database Model | Columnar database |
Time Series Database |
Architecture | Druid can be deployed on-premises, in the cloud, or using a managed service |
TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service. |
License | Apache 2.0 |
Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL) |
Use Cases | Real-time analytics, OLAP, time series data, event-driven data, log analytics, ad tech, user behavior analytics |
Monitoring, observability, IoT, real-time analytics, financial market data |
Scalability | Horizontally scalable, supports distributed architectures for high availability and performance |
Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes. |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Druid Overview
Apache Druid is an open-source, real-time analytics database designed for high-performance querying and data ingestion. Originally developed by Metamarkets in 2011 and later donated to the Apache Software Foundation in 2018, Druid has gained popularity for its ability to handle large volumes of data with low latency. With a unique architecture that combines elements of time series databases, search systems, and columnar storage, Druid is particularly well-suited for use cases involving event-driven data and interactive analytics.
TimescaleDB Overview
TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.
Apache Druid for Time Series Data
Apache Druid is designed for real time analytics and can be a good fit for working with time series data that needs to be analyzed quickly after being written. Druid also offers integrations for storing historical data in cheaper object storage so historical time series data can also be analyzed using Druid.
TimescaleDB for Time Series Data
TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.
Apache Druid Key Concepts
- Data Ingestion: The process of importing data into Druid from various sources, such as streaming or batch data sources.
- Segments: The smallest unit of data storage in Druid, segments are immutable, partitioned, and compressed.
- Data Rollup: The process of aggregating raw data during ingestion to reduce storage requirements and improve query performance.
- Nodes: Druid’s architecture consists of different types of nodes, including Historical, Broker, Coordinator, and MiddleManager/Overlord, each with specific responsibilities.
- Indexing Service: Druid’s indexing service manages the process of ingesting data, creating segments, and publishing them to deep storage.
TimescaleDB Key Concepts
- Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
- Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
- Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.
Apache Druid Architecture
Apache Druid is a powerful distributed data store designed for real-time analytics on large datasets. Within its architecture, several core components play pivotal roles in ensuring its efficiency and scalability. Here is an overview of the core components that power Apache Druid.
- Historical Nodes are fundamental to Druid’s data-serving capabilities. Their primary responsibility is to serve stored data to queries. To achieve this, they load segments from deep storage, retain them in memory, and then cater to the queries on these segments. When considering deployment and management, these nodes are typically stationed on machines endowed with significant memory and CPU resources. Their scalability is evident as they can be expanded horizontally simply by incorporating more nodes.
- Broker Nodes act as the gatekeepers for incoming queries. Their main function is to channel these queries to the appropriate historical nodes or real-time nodes. Intriguingly, they are stateless, which means they can be scaled out to accommodate an increase in query concurrency.
- Coordinator Nodes have a managerial role, overseeing the data distribution across historical nodes. Their decisions on which segments to load or drop are based on specific configurable rules. In terms of deployment, a Druid setup usually requires just one active coordinator node, with a backup node on standby for failover scenarios.
- Overlord Nodes dictate the assignment of ingestion tasks, directing them to either middle manager or indexer nodes. Their deployment mirrors that of the coordinator nodes, with typically one active overlord and a backup for redundancy.
- MiddleManager and Indexer Nodes are the workhorses of data ingestion in Druid. While MiddleManagers initiate short-lived tasks for data ingestion, indexers are designed for long-lived tasks. Given their intensive operations, these nodes demand high CPU and memory resources. Their scalability is flexible, allowing horizontal expansion based on the volume of data ingestion.
- Deep Storage is a component that serves as Druid’s persistent storage unit. Druid integrates with various blob storage solutions like HDFS, S3, and Google Cloud Storage.
- Metadata Storage is the repository for crucial metadata about segments, tasks, and configurations. Druid is compatible with popular databases for this purpose, including MySQL, PostgreSQL, and Derby.
TimescaleDB Architecture
TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Druid Features
Data Ingestion
Apache Druid supports both real-time and batch data ingestion, allowing it to process data from various sources like Kafka, Hadoop, or local files. With built-in support for data partitioning, replication, and roll-up, Druid ensures high availability and efficient storage.
Scalability and Performance
Druid is designed to scale horizontally, providing support for large-scale deployments with minimal performance degradation. Its unique architecture allows for fast and efficient querying, making it suitable for use cases requiring low-latency analytics.
Columnar Storage
Druid stores data in a columnar format, enabling better compression and faster query performance compared to row-based storage systems. Columnar storage also allows Druid to optimize queries by only accessing relevant columns.
Time-optimized Indexing
Druid’s indexing service creates segments with time-based partitioning, optimizing data storage and retrieval for time-series data. This feature significantly improves query performance for time-based queries. Data Rollups
Druid’s data rollup feature aggregates raw data during ingestion, reducing storage requirements and improving query performance. This feature is particularly beneficial for use cases involving high-cardinality data or large volumes of similar data points.
TimescaleDB Features
Partitioning
TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.
Time series focused SQL functions
TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.
Query optimization
As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.
Apache Druid Use Cases
Geospatial Analysis
Apache Druid provides support for geospatial data and queries, making it suitable for use cases that involve location-based data, such as tracking the movement of assets, analyzing user locations, or monitoring the distribution of events. Its ability to efficiently process large volumes of geospatial data enables users to gain insights and make data-driven decisions based on location information.
Machine Learning and AI
Druid’s high-performance data processing capabilities can be leveraged for preprocessing and feature extraction in machine learning and AI workflows. Its support for real-time data ingestion and low-latency querying make it suitable for use cases that require real-time predictions or insights, such as recommendation systems or predictive maintenance.
Real-Time Analytics
Apache Druid’s low-latency querying and real-time data ingestion capabilities make it an ideal solution for real-time analytics use cases, such as monitoring application performance, user behavior, or business metrics.
TimescaleDB Use Cases
Monitoring and metrics
TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.
IoT data storage
TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.
Financial data
TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.
Apache Druid Pricing Model
Apache Druid is an open source project, and as such, it can be self-hosted at no licensing cost. However, organizations that choose to self-host Druid will incur expenses related to infrastructure, management, and support when deploying and operating Druid in their environment. These costs will depend on the organization’s specific requirements and the chosen infrastructure, whether it’s on-premises or cloud-based.
For those who prefer a managed solution, there are cloud services available that offer Apache Druid as a managed service, such as Imply Cloud. With managed services, the provider handles infrastructure, management, and support, simplifying the deployment and operation of Druid. Pricing for these managed services will vary depending on the provider and the selected service tier, which may include factors such as data storage, query capacity, and data ingestion rates.
TimescaleDB Pricing Model
TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.