Azure Data Explorer vs Redis
A detailed comparison
Compare Azure Data Explorer and Redis for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Azure Data Explorer and Redis so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Azure Data Explorer and Redis perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Azure Data Explorer vs Redis Breakdown
Database Model | Columnar database |
In-memory database |
Architecture | ADX can be deployed in the Azure cloud as a managed service and is easily integrated with other Azure services and tools for seamless data processing and analytics. |
Redis can be deployed on-premises, in the cloud, or as a managed service |
License | Closed source |
BSD 3 |
Use Cases | Log and telemetry data analysis, real-time analytics, security and compliance analysis, IoT data processing |
Caching, message brokering, real-time analytics, session storage, geospatial data processing |
Scalability | Highly scalable with support for horizontal scaling, sharding, and partitioning |
Horizontally scalable via partitioning and clustering, supports data replication |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Azure Data Explorer Overview
Azure Data Explorer is a cloud-based, fully managed, big data analytics platform offered as part of the Microsoft Azure platform. It was announced by Microsoft in 2018 and is available as a PaaS offering. Azure Data Explorer provides high-performance capabilities for ingesting and querying telemetry, logs, and time series data.
Redis Overview
Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.
Azure Data Explorer for Time Series Data
Azure Data Explorer is well-suited for handling time series data. Its high-performance capabilities and ability to ingest large volumes of data make it suitable for analyzing and querying time series data in near real-time. With its advanced query operators, such as calculated columns, searching and filtering on rows, group by-aggregates, and joins, Azure Data Explorer enables efficient analysis of time series data. Its scalable architecture and distributed nature ensure that it can handle the velocity and volume requirements of time series data effectively.
Redis for Time Series Data
Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.
Azure Data Explorer Key Concepts
- Relational Data Model: Azure Data Explorer is a distributed database based on relational database management systems. It supports entities such as databases, tables, functions, and columns. Unlike traditional RDBMS, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. Instead, the necessary relationships are established at query time.
- Kusto Query Language (KQL): Azure Data Explorer uses KQL, a powerful and expressive query language, to enable users to explore and analyze their data with ease.
- Extents: In Azure Data Explorer, data is organized into units called extents, which are immutable, compressed sets of records that can be efficiently stored and queried.
Redis Key Concepts
- In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
- Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
- Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
- Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.
Azure Data Explorer Architecture
Azure Data Explorer is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. It is a columnar storage-based database that leverages compressed, immutable data extents for efficient storage and retrieval. The core components of Azure Data Explorer’s architecture include the Control Plane, Data Management, and Query Processing. The Control Plane is responsible for managing resources and metadata, while the Data Management component handles data ingestion and organization. Query Processing is responsible for executing queries and returning results to users.
Redis Architecture
Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Azure Data Explorer Features
High-performance data ingestion
Azure Data Explorer can ingest data at a rate of 200 MB per second per node, offering fast and efficient data ingestion capabilities.
Data visualization
Azure Data Explorer integrates seamlessly with popular data visualization tools like Power BI, Grafana, and Jupyter Notebooks, allowing users to easily visualize and analyze their data.
Advanced analytics
The Kusto Query Language (KQL) supports advanced analytics features such as time series analysis, pattern recognition, and anomaly detection, enabling users to gain deeper insights from their data.
Flexible schema
Unlike traditional relational databases, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. This flexibility allows for dynamic schema changes and the ability to handle semi-structured and unstructured data.
Redis Features
Atomicity
Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.
Broad data structure support
Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.
Pub/Sub messaging
Redis provides a publish/subscribe messaging system for real-time communication between clients.
Lua Scripting
Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.
Azure Data Explorer Use Cases
Log analytics
Azure Data Explorer is commonly used for log analytics, where it can ingest, store, and analyze large volumes of log data generated by applications, servers, and infrastructure. Organizations can use Azure Data Explorer to monitor application performance, troubleshoot issues, detect anomalies, and gain insights into user behavior. The ability to analyze log data in near real-time enables proactive issue resolution and improved operational efficiency.
Telemetry analytics
Azure Data Explorer is well-suited for telemetry analytics, where it can process and analyze data generated by IoT devices, sensors, and applications. Organizations can use Azure Data Explorer to monitor device health, optimize resource utilization, and detect anomalies in telemetry data. The platform’s scalability and high-performance capabilities make it ideal for handling the large volumes of data generated by IoT devices.
Time series analysis
Azure Data Explorer is used for time series analysis, where it can ingest and analyze time-stamped data points collected over time. This use case is applicable in various industries, including finance, healthcare, manufacturing, and energy. Organizations can use Azure Data Explorer to analyze trends, detect patterns, and forecast future events based on historical time series data. The platform’s advanced query operators and real-time analysis capabilities enable organizations to derive valuable insights from time series data.
Redis Use Cases
Caching
Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.
Task queues
Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle
Real-time analysis and machine learning
Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.
Azure Data Explorer Pricing Model
Azure Data Explorer’s pricing model is based on a pay-as-you-go approach, where customers are billed based on their usage of the service. The pricing is determined by factors such as the amount of data ingested, the amount of data stored, and the number of queries executed. Additionally, customers can choose between different pricing tiers that offer varying levels of performance and features. Azure Data Explorer also provides options for reserved capacity, which allows customers to reserve resources for a fixed period of time at a discounted rate.
Redis Pricing Model
Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.