Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Azure Data Explorer and AWS DynamoDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Azure Data Explorer and AWS DynamoDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Azure Data Explorer vs AWS DynamoDB Breakdown


 
Database Model

Columnar database

Key-value and document store

Architecture

ADX can be deployed in the Azure cloud as a managed service and is easily integrated with other Azure services and tools for seamless data processing and analytics.

DynamoDB is a fully managed, serverless NoSQL database provided by Amazon Web Services (AWS). It uses a single-digit millisecond latency for high-performance use cases and supports both key-value and document data models. Data is partitioned and replicated across multiple availability zones within an AWS region, and DynamoDB supports eventual or strong consistency for read operations

License

Closed source

Closed source

Use Cases

Log and telemetry data analysis, real-time analytics, security and compliance analysis, IoT data processing

Serverless web applications, real-time bidding platforms, gaming leaderboards, IoT data management, high-velocity data processing

Scalability

Highly scalable with support for horizontal scaling, sharding, and partitioning

Automatically scales to handle large amounts of read and write throughput, supports on-demand capacity and auto-scaling, global tables for multi-region replication

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Azure Data Explorer Overview

Azure Data Explorer is a cloud-based, fully managed, big data analytics platform offered as part of the Microsoft Azure platform. It was announced by Microsoft in 2018 and is available as a PaaS offering. Azure Data Explorer provides high-performance capabilities for ingesting and querying telemetry, logs, and time series data.

AWS DynamoDB Overview

Amazon DynamoDB is a managed NoSQL database service provided by AWS. It was first introduced in 2012, and it was designed to provide low-latency, high-throughput performance. DynamoDB is built on the principles of the Dynamo paper, which was published by Amazon engineers in 2007, and it aims to offer a highly available, scalable, and distributed key-value store.


Azure Data Explorer for Time Series Data

Azure Data Explorer is well-suited for handling time series data. Its high-performance capabilities and ability to ingest large volumes of data make it suitable for analyzing and querying time series data in near real-time. With its advanced query operators, such as calculated columns, searching and filtering on rows, group by-aggregates, and joins, Azure Data Explorer enables efficient analysis of time series data. Its scalable architecture and distributed nature ensure that it can handle the velocity and volume requirements of time series data effectively.

AWS DynamoDB for Time Series Data

DynamoDB can be used with time series data, although it may not be the most optimized solution compared to specialized time series databases. To store time series data in DynamoDB, you can use a composite primary key with a partition key for the entity identifier and a sort key for the timestamp. This allows you to efficiently query data for a specific entity and time range. However, DynamoDB’s main weakness when dealing with time series data is its lack of built-in support for data aggregation and downsampling, which are common requirements for time series analysis. You may need to perform these operations in your application or use additional services like AWS Lambda to process the data.


Azure Data Explorer Key Concepts

  • Relational Data Model: Azure Data Explorer is a distributed database based on relational database management systems. It supports entities such as databases, tables, functions, and columns. Unlike traditional RDBMS, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. Instead, the necessary relationships are established at query time.
  • Kusto Query Language (KQL): Azure Data Explorer uses KQL, a powerful and expressive query language, to enable users to explore and analyze their data with ease.
  • Extents: In Azure Data Explorer, data is organized into units called extents, which are immutable, compressed sets of records that can be efficiently stored and queried.

AWS DynamoDB Key Concepts

Some of the key terms and concepts specific to DynamoDB include:

  • Tables: In DynamoDB, data is stored in tables, which are containers for items. Each table has a primary key that uniquely identifies each item in the table.
  • Items: Items are individual records in a DynamoDB table, and they consist of one or more attributes.
  • Attributes: Attributes are key-value pairs that make up an item in a table. DynamoDB supports scalar, document, and set data types for attributes.
  • Primary Key: The primary key uniquely identifies each item in a table, and it can be either a single-attribute partition key or a composite partition-sort key.


Azure Data Explorer Architecture

Azure Data Explorer is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. It is a columnar storage-based database that leverages compressed, immutable data extents for efficient storage and retrieval. The core components of Azure Data Explorer’s architecture include the Control Plane, Data Management, and Query Processing. The Control Plane is responsible for managing resources and metadata, while the Data Management component handles data ingestion and organization. Query Processing is responsible for executing queries and returning results to users.

AWS DynamoDB Architecture

DynamoDB is a NoSQL database that uses a key-value store and document data model. It is designed to provide high availability, durability, and scalability by automatically partitioning data across multiple servers and using replication to ensure fault tolerance. Some of the main components of DynamoDB include:

  • Partitioning: DynamoDB automatically partitions data based on the partition key, which ensures that data is evenly distributed across multiple storage nodes.
  • Replication: DynamoDB replicates data across multiple availability zones within an AWS region, providing high availability and durability.
  • Consistency: DynamoDB offers two consistency models: eventual consistency and strong consistency, allowing you to choose the appropriate level of consistency for your application.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Azure Data Explorer Features

High-performance data ingestion

Azure Data Explorer can ingest data at a rate of 200 MB per second per node, offering fast and efficient data ingestion capabilities.

Data visualization

Azure Data Explorer integrates seamlessly with popular data visualization tools like Power BI, Grafana, and Jupyter Notebooks, allowing users to easily visualize and analyze their data.

Advanced analytics

The Kusto Query Language (KQL) supports advanced analytics features such as time series analysis, pattern recognition, and anomaly detection, enabling users to gain deeper insights from their data.

Flexible schema

Unlike traditional relational databases, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. This flexibility allows for dynamic schema changes and the ability to handle semi-structured and unstructured data.

AWS DynamoDB Features

Auto scaling

DynamoDB can automatically scale its read and write capacity based on the workload, allowing you to maintain consistent performance without over-provisioning resources.

Backup and restore

DynamoDB provides built-in support for point-in-time recovery, enabling you to restore your table to a previous state within the last 35 days.

Global tables

DynamoDB global tables enable you to replicate your table across multiple AWS regions, providing low-latency access and data redundancy for global applications.

Streams

DynamoDB Streams capture item-level modifications in your table and can be used to trigger AWS Lambda functions for real-time processing or to synchronize data with other AWS services.


Azure Data Explorer Use Cases

Log analytics

Azure Data Explorer is commonly used for log analytics, where it can ingest, store, and analyze large volumes of log data generated by applications, servers, and infrastructure. Organizations can use Azure Data Explorer to monitor application performance, troubleshoot issues, detect anomalies, and gain insights into user behavior. The ability to analyze log data in near real-time enables proactive issue resolution and improved operational efficiency.

Telemetry analytics

Azure Data Explorer is well-suited for telemetry analytics, where it can process and analyze data generated by IoT devices, sensors, and applications. Organizations can use Azure Data Explorer to monitor device health, optimize resource utilization, and detect anomalies in telemetry data. The platform’s scalability and high-performance capabilities make it ideal for handling the large volumes of data generated by IoT devices.

Time series analysis

Azure Data Explorer is used for time series analysis, where it can ingest and analyze time-stamped data points collected over time. This use case is applicable in various industries, including finance, healthcare, manufacturing, and energy. Organizations can use Azure Data Explorer to analyze trends, detect patterns, and forecast future events based on historical time series data. The platform’s advanced query operators and real-time analysis capabilities enable organizations to derive valuable insights from time series data.

AWS DynamoDB Use Cases

Session management

DynamoDB can be used to store session data for web applications, providing fast and scalable access to session information.

Gaming

DynamoDB can be used to store player data, game state, and other game-related information for online games, providing low-latency and high-throughput performance.

Internet of Things

DynamoDB can be used to store and process sensor data from IoT devices, enabling real-time monitoring and analysis of device data.


Azure Data Explorer Pricing Model

Azure Data Explorer’s pricing model is based on a pay-as-you-go approach, where customers are billed based on their usage of the service. The pricing is determined by factors such as the amount of data ingested, the amount of data stored, and the number of queries executed. Additionally, customers can choose between different pricing tiers that offer varying levels of performance and features. Azure Data Explorer also provides options for reserved capacity, which allows customers to reserve resources for a fixed period of time at a discounted rate.

AWS DynamoDB Pricing Model

DynamoDB offers two pricing options: provisioned capacity and on-demand capacity. With provisioned capacity, you specify the number of reads and writes per second that you expect your application to require, and you are charged based on the amount of provisioned capacity. This pricing model is suitable for applications with predictable traffic or gradually ramping traffic. You can use auto scaling to adjust your table’s capacity automatically based on the specified utilization rate, ensuring application performance while reducing costs.

On the other hand, with on-demand capacity, you pay per request for the data reads and writes your application performs on your tables. You do not need to specify how much read and write throughput you expect your application to perform, as DynamoDB instantly accommodates your workloads as they ramp up or down. This pricing model is suitable for applications with fluctuating or unpredictable traffic patterns.