Azure Data Explorer vs DuckDB
A detailed comparison
Compare Azure Data Explorer and DuckDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Azure Data Explorer and DuckDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Azure Data Explorer and DuckDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Azure Data Explorer vs DuckDB Breakdown
Database Model | Columnar database |
Columnar database |
Architecture | ADX can be deployed in the Azure cloud as a managed service and is easily integrated with other Azure services and tools for seamless data processing and analytics. |
DuckDB is intended for use as an embedded database and is primariliy focused on single node performance. |
License | Closed source |
MIT |
Use Cases | Log and telemetry data analysis, real-time analytics, security and compliance analysis, IoT data processing |
Embedded analytics, Data Science, Data processing, ETL pipelines |
Scalability | Highly scalable with support for horizontal scaling, sharding, and partitioning |
Embedded and single-node focused, with limited support for parallelism |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Azure Data Explorer Overview
Azure Data Explorer is a cloud-based, fully managed, big data analytics platform offered as part of the Microsoft Azure platform. It was announced by Microsoft in 2018 and is available as a PaaS offering. Azure Data Explorer provides high-performance capabilities for ingesting and querying telemetry, logs, and time series data.
DuckDB Overview
DuckDB is an in-process SQL OLAP (Online Analytical Processing) database management system. It is designed to be simple, fast, and feature-rich. DuckDB can be used for processing and analyzing tabular datasets, such as CSV or Parquet files. It provides a rich SQL dialect with support for transactions, persistence, extensive SQL queries, and direct querying of Parquet and CSV files. DuckDB is built with a vectorized engine that is optimized for analytics and supports parallel query processing. It is designed to be easy to install and use, with no external dependencies and support for multiple programming languages.
Azure Data Explorer for Time Series Data
Azure Data Explorer is well-suited for handling time series data. Its high-performance capabilities and ability to ingest large volumes of data make it suitable for analyzing and querying time series data in near real-time. With its advanced query operators, such as calculated columns, searching and filtering on rows, group by-aggregates, and joins, Azure Data Explorer enables efficient analysis of time series data. Its scalable architecture and distributed nature ensure that it can handle the velocity and volume requirements of time series data effectively.
DuckDB for Time Series Data
DuckDB can be used effectively with time series data. It supports processing and analyzing tabular datasets, which can include time series data stored in CSV or Parquet files. With its optimized analytics engine and support for complex SQL queries, DuckDB can perform aggregations, joins, and other time series analysis operations efficiently. However, it’s important to note that DuckDB is not specifically designed for time series data management and may not have specialized features tailored for time series analysis like some dedicated time series databases.
Azure Data Explorer Key Concepts
- Relational Data Model: Azure Data Explorer is a distributed database based on relational database management systems. It supports entities such as databases, tables, functions, and columns. Unlike traditional RDBMS, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. Instead, the necessary relationships are established at query time.
- Kusto Query Language (KQL): Azure Data Explorer uses KQL, a powerful and expressive query language, to enable users to explore and analyze their data with ease.
- Extents: In Azure Data Explorer, data is organized into units called extents, which are immutable, compressed sets of records that can be efficiently stored and queried.
DuckDB Key Concepts
- In-process: DuckDB operates in-process, meaning it runs within the same process as the application using it, without the need for a separate server.
- OLAP: DuckDB is an OLAP database, which means it is optimized for analytical query processing.
- Vectorized engine: DuckDB utilizes a vectorized engine that operates on batches of data, improving query performance.
- Transactions: DuckDB supports transactional operations, ensuring the atomicity, consistency, isolation, and durability (ACID) properties of data operations.
- SQL dialect: DuckDB provides a rich SQL dialect with advanced features such as arbitrary and nested correlated subqueries, window functions, collations, and support for complex types like arrays and structs
Azure Data Explorer Architecture
Azure Data Explorer is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. It is a columnar storage-based database that leverages compressed, immutable data extents for efficient storage and retrieval. The core components of Azure Data Explorer’s architecture include the Control Plane, Data Management, and Query Processing. The Control Plane is responsible for managing resources and metadata, while the Data Management component handles data ingestion and organization. Query Processing is responsible for executing queries and returning results to users.
DuckDB Architecture
DuckDB follows an in-process architecture, running within the same process as the application. It is a relational table-oriented database management system that supports SQL queries for producing analytical results. DuckDB is built using C++11 and is designed to have no external dependencies. It can be compiled as a single file, making it easy to install and integrate into applications.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Azure Data Explorer Features
High-performance data ingestion
Azure Data Explorer can ingest data at a rate of 200 MB per second per node, offering fast and efficient data ingestion capabilities.
Data visualization
Azure Data Explorer integrates seamlessly with popular data visualization tools like Power BI, Grafana, and Jupyter Notebooks, allowing users to easily visualize and analyze their data.
Advanced analytics
The Kusto Query Language (KQL) supports advanced analytics features such as time series analysis, pattern recognition, and anomaly detection, enabling users to gain deeper insights from their data.
Flexible schema
Unlike traditional relational databases, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. This flexibility allows for dynamic schema changes and the ability to handle semi-structured and unstructured data.
DuckDB Features
Transactions and Persistence
DuckDB supports transactional operations, ensuring data integrity and durability. It allows for persistent storage of data between sessions.
Extensive SQL Support
DuckDB provides a rich SQL dialect with support for advanced query features, including correlated subqueries, window functions, and complex data types.
Direct Parquet & CSV Querying
DuckDB allows direct querying of Parquet and CSV files, enabling efficient analysis of data stored in these formats.
Fast Analytical Queries
DuckDB is designed to run analytical queries efficiently, thanks to its vectorized engine and optimization for analytics workloads.
Parallel Query Processing
DuckDB can process queries in parallel, taking advantage of multi-core processors to improve query performance.
Azure Data Explorer Use Cases
Log analytics
Azure Data Explorer is commonly used for log analytics, where it can ingest, store, and analyze large volumes of log data generated by applications, servers, and infrastructure. Organizations can use Azure Data Explorer to monitor application performance, troubleshoot issues, detect anomalies, and gain insights into user behavior. The ability to analyze log data in near real-time enables proactive issue resolution and improved operational efficiency.
Telemetry analytics
Azure Data Explorer is well-suited for telemetry analytics, where it can process and analyze data generated by IoT devices, sensors, and applications. Organizations can use Azure Data Explorer to monitor device health, optimize resource utilization, and detect anomalies in telemetry data. The platform’s scalability and high-performance capabilities make it ideal for handling the large volumes of data generated by IoT devices.
Time series analysis
Azure Data Explorer is used for time series analysis, where it can ingest and analyze time-stamped data points collected over time. This use case is applicable in various industries, including finance, healthcare, manufacturing, and energy. Organizations can use Azure Data Explorer to analyze trends, detect patterns, and forecast future events based on historical time series data. The platform’s advanced query operators and real-time analysis capabilities enable organizations to derive valuable insights from time series data.
DuckDB Use Cases
Processing and Storing Tabular Datasets
DuckDB is well-suited for scenarios where you need to process and store tabular datasets, such as data imported from CSV or Parquet files. It provides efficient storage and retrieval mechanisms for working with structured data.
Interactive Data Analysis
DuckDB is ideal for interactive data analysis tasks, particularly when dealing with large tables. It enables you to perform complex operations like joining and aggregating multiple large tables efficiently, allowing for rapid exploration and extraction of insights from your data.
Large Result Set Transfer to Client
When you need to transfer large result sets from the database to the client application, DuckDB can be a suitable choice. Its optimized query processing and efficient data transfer mechanisms enable fast and seamless retrieval of large amounts of data.
Azure Data Explorer Pricing Model
Azure Data Explorer’s pricing model is based on a pay-as-you-go approach, where customers are billed based on their usage of the service. The pricing is determined by factors such as the amount of data ingested, the amount of data stored, and the number of queries executed. Additionally, customers can choose between different pricing tiers that offer varying levels of performance and features. Azure Data Explorer also provides options for reserved capacity, which allows customers to reserve resources for a fixed period of time at a discounted rate.
DuckDB Pricing Model
DuckDB is a free and open-source database management system released under the permissive MIT License. It can be freely used, modified, and distributed without any licensing costs.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.