Amazon Timestream for LiveAnalytics vs Elasticsearch
A detailed comparison
Compare Amazon Timestream for LiveAnalytics and Elasticsearch for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and Elasticsearch so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and Elasticsearch perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Amazon Timestream for LiveAnalytics vs Elasticsearch Breakdown
Database Model | Time series database |
Distributed search and analytics engine, document-oriented |
Architecture | Timestream is a fully managed, serverless time series database service that is only available on AWS. |
Elasticsearch is built on top of Apache Lucene and uses a RESTful API for communication. It stores data in a flexible JSON document format, and the data is automatically indexed for fast search and retrieval. Elasticsearch can be deployed as a single node, in a cluster configuration, or as a managed cloud service (Elastic Cloud) |
License | Closed source |
Elastic License |
Use Cases | IoT, DevOps, time series analytics |
Full-text search, log and event data analysis, real-time application monitoring, analytics |
Scalability | Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention |
Horizontally scalable with support for data sharding, replication, and distributed querying |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Amazon Timestream for LiveAnalytics Overview
Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by AWS. Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream for LiveAnalytics easily integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud. AWS also offers Timestream for InfluxDB which is a managed version of InfluxDB that is compatible with InfluxDB 2.x APIs and released in partnership with InfluxData.
Elasticsearch Overview
Elasticsearch is an open-source distributed search and analytics engine built on top of Apache Lucene. It was first released in 2010 and has since become popular for its scalability, near real-time search capabilities, and ease of use. Elasticsearch is designed to handle a wide variety of data types, including structured, unstructured, and time-based data. It is often used in conjunction with other tools from the Elastic Stack, such as Logstash for data ingestion and Kibana for data visualization.
Amazon Timestream for LiveAnalytics for Time Series Data
Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates and efficient storage. Its dual-tiered storage architecture, consisting of the memory Store and magnetic Store, allows users to manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Elasticsearch for Time Series Data
Elasticsearch can be used for time series data storage and analysis, thanks to its distributed architecture, near real-time search capabilities, and support for aggregations. However, it might not be as optimized for time series data as dedicated time series databases. Despite this, Elasticsearch is widely used for log and event data storage and analysis which can be considered time series data.
Amazon Timestream for LiveAnalytics Key Concepts
- Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
- Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
- Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.
Elasticsearch Key Concepts
- Inverted Index: A data structure used by Elasticsearch to enable fast and efficient full-text searches.
- Cluster: A group of Elasticsearch nodes that work together to distribute data and processing tasks.
- Shard: A partition of an Elasticsearch index that allows data to be distributed across multiple nodes for improved performance and fault tolerance.
Amazon Timestream for LiveAnalytics Architecture
Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.
Elasticsearch Architecture
Elasticsearch is a distributed, RESTful search and analytics engine that uses a schema-free JSON document data model. It is built on top of Apache Lucene and provides a high-level API for indexing, searching, and analyzing data. Elasticsearch’s architecture is designed to be horizontally scalable, with data distributed across multiple nodes in a cluster. Data is indexed using inverted indices, which enable fast and efficient full-text searches.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Amazon Timestream for LiveAnalytics Features
Serverless architecture
Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.
Dual-tiered storage
Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.
SQL-like querying
Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Timestream for InfluxDB
For workloads that require near real-time queries with single millisecond latency AWS recommends using Timestream for InfluxDB rather than LiveAnalytics. Timestream for InfluxDB also provides compatibility with InfluxDB APIs for users who want an AWS managed service without having to update their code.
Elasticsearch Features
Full-Text Search
Elasticsearch provides powerful full-text search capabilities with support for complex queries, scoring, and relevance ranking.
Scalability
Elasticsearch’s distributed architecture enables horizontal scalability, allowing it to handle large volumes of data and high query loads.
Aggregations
Elasticsearch supports various aggregation operations, such as sum, average, and percentiles, which are useful for analyzing and summarizing data.
Amazon Timestream for LiveAnalytics Use Cases
IoT applications
Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.
Devops
LiveAnalytics can be used for general DevOps workloads like monitoring application health and utilization. For use cases that require real time monitoring with the lowest latency possible, AWS recommends using Timestream for InfluxDB.
Analytics
Amazon Timestream for LiveAnalytics can be used to track analytics data like web and application data. The built-in time series analytics functions can then be used to aggregate and analyze data to get valuable insights with increased developer productivity.
Elasticsearch Use Cases
Log and Event Data Analysis
Elasticsearch is widely used for storing and analyzing log and event data, such as web server logs, application logs, and network events, to help identify patterns, troubleshoot issues, and monitor system performance.
Full-Text Search
Elasticsearch is a popular choice for implementing full-text search functionality in applications, websites, and content management systems due to its powerful search capabilities and flexible data model.
Security Analytics
Elasticsearch, in combination with other Elastic Stack components, can be used for security analytics, such as monitoring network traffic, detecting anomalies, and identifying potential threats.
Amazon Timestream for LiveAnalytics Pricing Model
Amazon Timestream for LiveAnalytics offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.
Elasticsearch Pricing Model
Elasticsearch is open-source software and can be self-hosted without any licensing fees. However, operational costs, such as hardware, hosting, and maintenance, should be considered. Elasticsearch also offers a managed cloud service called Elastic Cloud, which provides various pricing tiers based on factors like storage, computing resources, and support. Elastic Cloud includes additional features and tools, such as Kibana, machine learning, and security features.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.